Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
PNAS Nexus ; 3(3): pgae066, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38444601

RESUMO

Why does the same experience elicit strong emotional responses in some individuals while leaving others largely indifferent? Is the variance influenced by who people are (personality traits), how they feel (emotional state), where they come from (demographics), or a unique combination of these? In this 2,900+ participants study, we disentangle the factors that underlie individual variations in the universal experience of aesthetic chills, the feeling of cold and shivers down the spine during peak experiences. Here, we unravel the interplay of psychological and sociocultural dynamics influencing self-reported chills reactions. A novel technique harnessing mass data mining of social media platforms curates the first large database of ecologically sourced chills-evoking stimuli. A combination of machine learning techniques (LASSO and SVM) and multilevel modeling analysis elucidates the interacting roles of demographics, traits, and states factors in the experience of aesthetic chills. These findings highlight a tractable set of features predicting the occurrence and intensity of chills-age, sex, pre-exposure arousal, predisposition to Kama Muta (KAMF), and absorption (modified tellegen absorption scale [MODTAS]), with 73.5% accuracy in predicting the occurrence of chills and accounting for 48% of the variance in chills intensity. While traditional methods typically suffer from a lack of control over the stimuli and their effects, this approach allows for the assignment of stimuli tailored to individual biopsychosocial profiles, thereby, increasing experimental control and decreasing unexplained variability. Further, they elucidate how hidden sociocultural factors, psychological traits, and contextual states shape seemingly "subjective" phenomena.

2.
Annu Rev Pharmacol Toxicol ; 64: 191-209, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-37506331

RESUMO

Traditionally, chemical toxicity is determined by in vivo animal studies, which are low throughput, expensive, and sometimes fail to predict compound toxicity in humans. Due to the increasing number of chemicals in use and the high rate of drug candidate failure due to toxicity, it is imperative to develop in vitro, high-throughput screening methods to determine toxicity. The Tox21 program, a unique research consortium of federal public health agencies, was established to address and identify toxicity concerns in a high-throughput, concentration-responsive manner using a battery of in vitro assays. In this article, we review the advancements in high-throughput robotic screening methodology and informatics processes to enable the generation of toxicological data, and their impact on the field; further, we discuss the future of assessing environmental toxicity utilizing efficient and scalable methods that better represent the corresponding biological and toxicodynamic processes in humans.


Assuntos
Ensaios de Triagem em Larga Escala , Toxicologia , Animais , Humanos , Ensaios de Triagem em Larga Escala/métodos , Toxicologia/métodos
3.
ACS Pharmacol Transl Sci ; 6(5): 683-701, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37200814

RESUMO

Dietary supplements and natural products are often marketed as safe and effective alternatives to conventional drugs, but their safety and efficacy are not well regulated. To address the lack of scientific data in these areas, we assembled a collection of Dietary Supplements and Natural Products (DSNP), as well as Traditional Chinese Medicinal (TCM) plant extracts. These collections were then profiled in a series of in vitro high-throughput screening assays, including a liver cytochrome p450 enzyme panel, CAR/PXR signaling pathways, and P-glycoprotein (P-gp) transporter assay activities. This pipeline facilitated the interrogation of natural product-drug interaction (NaPDI) through prominent metabolizing pathways. In addition, we compared the activity profiles of the DSNP/TCM substances with those of an approved drug collection (the NCATS Pharmaceutical Collection or NPC). Many of the approved drugs have well-annotated mechanisms of action (MOAs), while the MOAs for most of the DSNP and TCM samples remain unknown. Based on the premise that compounds with similar activity profiles tend to share similar targets or MOA, we clustered the library activity profiles to identify overlap with the NPC to predict the MOAs of the DSNP/TCM substances. Our results suggest that many of these substances may have significant bioactivity and potential toxicity, and they provide a starting point for further research on their clinical relevance.

4.
Cogn Sci ; 47(3): e13264, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36960856

RESUMO

Our culture and its scientific endeavor direly need a holistic characterization of mind and body. Many phenomena attest to the profound effects of beliefs on bodily function (e.g., open-label placebo's effects on chronic pain) and interoceptive systems' role in mental processes (e.g., the emerging role of gut microbiomes in the mood). We need a mechanistic, integrative framework to account for these phenomena and generate novel predictions. Major advances have been made in understanding how the nervous system senses and regulates the body and in modeling how the brain implements the computations that subserve such activities. However, the vestiges of Cartesianism have entrained a style of thinking in which systems from the brainstem downward exist as the implementation layer of computational processes supporting sensation and behavior, rather than a complementary locus of information processing. As speakers and microphones, rather than other members of the chorus. We are thus forced to perceive well-documented, belief-driven phenomena like placebo, ritual, and psychosomatic disorders as mysterious obstacles or dubious allies rather than as a wellspring of potential.


Assuntos
Encéfalo , Estado de Consciência , Humanos , Estado de Consciência/fisiologia , Encéfalo/fisiologia , Processos Mentais , Ciência Cognitiva
5.
Curr Protoc ; 2(12): e615, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36469580

RESUMO

The pregnane X receptor (PXR) is a nuclear receptor found mainly in the liver and intestine, whose main function is to regulate the expression of drug-metabolizing enzymes and transporters. Recently, it has been noted that PXR plays critical roles in energy homeostasis, immune response, and cancer. Therefore, identifying chemicals or compounds that can modulate PXR is of great interest, as these can result in downstream toxicity or, alternatively, may have therapeutic potential. Testing one compound at a time for PXR activity would be inefficient and take thousands of hours for large compound libraries. Here, we describe a high-throughput screening method that encompasses plating and treating HepG2-CYP3A4-hPXR cells in a 1536-well plate, as well as reading and interpreting assay (e.g., luciferase reporter gene activity) endpoints. These cells are stably transfected with a human PXR expression vector and CYP3A4-promoter-driven luciferase reporter vector, allowing the identification of compounds that activate PXR through cytochrome 450 3A4. We also describe how to analyze the data from each assay and explain follow-up steps, namely pharmacological characterization and quantitative polymerase chain reaction (qPCR) assays, which can be performed to confirm results from the original screen. These methods can be used to identify and confirm hPXR activators after completion of a compound screening. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Establishment of a high-throughput assay to identify hPXR activators Basic Protocol 2: Quantitative high-throughput screening a compound library to classify hPXR activators Basic Protocol 3: Performing pharmacological characterization and qPCR assays to confirm hPXR activators.


Assuntos
Citocromo P-450 CYP3A , Receptores de Esteroides , Humanos , Receptor de Pregnano X/genética , Citocromo P-450 CYP3A/genética , Receptores de Esteroides/genética , Receptores Citoplasmáticos e Nucleares , Luciferases/metabolismo
6.
JCI Insight ; 7(12)2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35579950

RESUMO

Cyclophosphamide (CPA) and doxorubicin (DOX) are key components of chemotherapy for triple-negative breast cancer (TNBC), although suboptimal outcomes are commonly associated with drug resistance and/or intolerable side effects. Through an approach combining high-throughput screening and chemical modification, we developed CN06 as a dual activator of the constitutive androstane receptor (CAR) and nuclear factor erythroid 2-related factor 2 (Nrf2). CN06 enhances CAR-induced bioactivation of CPA (a prodrug) by provoking hepatic expression of CYP2B6, while repressing DOX-induced cytotoxicity in cardiomyocytes in vitro via stimulating Nrf2-antioxidant signaling. Utilizing a multicellular coculture model incorporating human primary hepatocytes, TNBC cells, and cardiomyocytes, we show that CN06 increased CPA/DOX-mediated TNBC cell death via CAR-dependent CYP2B6 induction and subsequent conversion of CPA to its active metabolite 4-hydroxy-CPA, while protecting against DOX-induced cardiotoxicity by selectively activating Nrf2-antioxidant signaling in cardiomyocytes but not in TNBC cells. Furthermore, CN06 preserves the viability and function of human iPSC-derived cardiomyocytes by modulating antioxidant defenses, decreasing apoptosis, and enhancing the kinetics of contraction and relaxation. Collectively, our findings identify CAR and Nrf2 as potentially novel combined therapeutic targets whereby CN06 holds the potential to improve the efficacy/toxicity ratio of CPA/DOX-containing chemotherapy.


Assuntos
Cardiotoxicidade , Neoplasias de Mama Triplo Negativas , Antioxidantes/farmacologia , Cardiotoxicidade/prevenção & controle , Receptor Constitutivo de Androstano , Ciclofosfamida , Citocromo P-450 CYP2B6 , Doxorrubicina/farmacologia , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
7.
Methods Mol Biol ; 2474: 3-9, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35294750

RESUMO

The estrogen-related receptor alpha (ERRα, NR3B1) is an orphan nuclear receptor which plays a role in endocrine disruption, energy homeostasis, and cancer prognosis. One of the unique features of this transcription factor is the interplay with its cofactors. For instance, certain modulators require the presence of proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) alongside ERRα. Therefore, identification of ERRα agonists and antagonists require examination of this nuclear receptor alone and together with PGC-1α. In this book chapter, we describe the step-by-step protocol of a multiplex luciferase assay designed to identify ERRα agonists, antagonists, and toxicity in one quantitative high-throughput screening assay using two different stable cell lines.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição , Linhagem Celular , Luciferases/genética , Luciferases/metabolismo , Fatores de Transcrição/metabolismo
8.
Methods Mol Biol ; 2474: 29-38, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35294753

RESUMO

The constitutive androstane receptor (CAR, NR1I3) controls the transcription of numerous hepatic drug metabolizing enzymes and transporters. There are two possible methods of activation for CAR, direct ligand binding and a ligand-independent method, which makes this a unique nuclear receptor. Both mechanisms require the translocation of CAR from the cytoplasm into the nucleus. Interestingly, CAR is constitutively active and spontaneously localized in the nucleus of most immortalized cell lines. This creates an important challenge in most in vitro assay models because immortalized cells cannot be used without inhibiting the high basal activity. In this book chapter, we go into detail of how to perform quantitative high-throughput screens to identify human CAR modulators through the employment of a double stable cell line. Using this line, we can identify activators, as well as deactivators, of the challenging nuclear receptor, CAR.


Assuntos
Núcleo Celular , Receptores Citoplasmáticos e Nucleares , Bioensaio , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Genes Reporter , Humanos , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo
9.
Biochem Pharmacol ; 184: 114368, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33333074

RESUMO

The pregnane X receptor (PXR; NR1I2) is an important nuclear receptor whose main function is to regulate enzymes within drug metabolism. The main drug metabolizing enzyme regulated by PXR, cytochrome P450 (CYP) 3A4, accounts for the metabolism of nearly 50% of all marketed drugs. Recently, PXR has also been identified as playing a role in energy homeostasis, immune response, and cancer. Due to its interaction with these important roles, alongside its drug-drug interaction function, it is imperative to identify compounds which can modulate PXR. In this study, we screened the Tox21 10,000 compound collection to identify hPXR agonists using a stable hPXR-Luc HepG2 cell line. A pharmacological study in the presence of a PXR antagonist was performed to confirm the activity of the chosen potential hPXR agonists in the same cells. Finally, metabolically competent cell lines - HepaRG and HepaRG-PXR-Knockout (KO) - were used to further confirm the potential PXR activators. We identified a group of structural clusters and singleton compounds which included potentially novel hPXR agonists. Of the 21 selected compounds, 11 potential PXR activators significantly induced CYP3A4 mRNA expression in HepaRG cells. All of these compounds lost their induction when treating HepaRG-PXR-KO cells, confirming their PXR activation. Etomidoline presented as a potentially selective agonist of PXR. In conclusion, the current study has identified 11 compounds as potentially novel or not well-characterized PXR activators. These compounds should further be studied for their potential effects on drug metabolism and drug-drug interactions due to the immense implications of being a PXR agonist.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Receptor de Pregnano X/agonistas , Receptor de Pregnano X/metabolismo , Citocromo P-450 CYP3A/genética , Indutores do Citocromo P-450 CYP3A/farmacologia , Técnicas de Inativação de Genes , Células HEK293 , Células Hep G2 , Humanos , Receptor de Pregnano X/antagonistas & inibidores , Receptor de Pregnano X/genética , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas
10.
Int J Mol Sci ; 21(21)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142951

RESUMO

In vitro methods which incorporate metabolic capability into the assays allow us to assess the activity of metabolites from their parent compounds. These methods can be applied into high-throughput screening (HTS) platforms, thereby increasing the speed to identify compounds that become active via the metabolism process. HTS was originally used in the pharmaceutical industry and now is also used in academic settings to evaluate biological activity and/or toxicity of chemicals. Although most chemicals are metabolized in our body, many HTS assays lack the capability to determine compound activity via metabolism. To overcome this problem, several in vitro metabolic methods have been applied to an HTS format. In this review, we describe in vitro metabolism methods and their application in HTS assays, as well as discuss the future perspectives of HTS with metabolic activity. Each in vitro metabolism method has advantages and disadvantages. For instance, the S9 mix has a full set of liver metabolic enzymes, but it displays high cytotoxicity in cell-based assays. In vitro metabolism requires liver fractions or the use of other metabolically capable systems, including primary hepatocytes or recombinant enzymes. Several newly developed in vitro metabolic methods, including HepaRG cells, three-dimensional (3D) cell models, and organ-on-a-chip technology, will also be discussed. These newly developed in vitro metabolism approaches offer significant progress in dissecting biological processes, developing drugs, and making toxicology studies quicker and more efficient.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Hepatócitos/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Células Cultivadas , Hepatócitos/efeitos dos fármacos , Humanos , Inativação Metabólica
11.
ACS Med Chem Lett ; 10(7): 1039-1044, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31312405

RESUMO

The constitutive androstane receptor (CAR) is a xenobiotic sensor governing the transcription of genes involved in drug disposition, energy homeostasis, and cell proliferation. However, currently available human CAR (hCAR) agonists are nonselective, which commonly activate hCAR along with other nuclear receptors, especially the closely related human pregnane X receptor (hPXR). Using a well-known hCAR agonist CITCO as a template, we report our efforts in the discovery of a potent and highly selective hCAR agonist. Two of the new compounds of the series, 18 and 19 (DL5050), demonstrated excellent potency and selectivity for hCAR over hPXR. DL5050 preferentially induced the expression of CYP2B6 (target of hCAR) over CYP3A4 (target of hPXR) on both the mRNA and protein levels. The selective hCAR agonist DL5050 represents a valuable tool molecule to further define the biological functions of hCAR, and may also be used as a new lead in the discovery of hCAR agonists for various therapeutic applications.

12.
Biochem Pharmacol ; 168: 224-236, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31306645

RESUMO

The constitutive androstane receptor (CAR) plays an important role in hepatic drug metabolism and detoxification but has recently been projected as a potential drug target for metabolic disorders due to its repression of lipogenesis and gluconeogenesis. Thus, identification of physiologically-relevant CAR modulators has garnered significant interest. Here, we adapted the previously characterized human CAR (hCAR) nuclear translocation assay in human primary hepatocytes (HPH) to a high-content format and screened an FDA-approved drug library containing 978 compounds. Comparison of hCAR nuclear translocation results with the Tox21 hCAR luciferase reporter assay database in 643 shared compounds revealed significant overlap between these two assays, with approximately half of hCAR agonists also mediating nuclear translocation. Further validation of these compounds in HPH and/or using published data from literature demonstrated that hCAR translocation exhibits a higher correlation with the induction of hCAR target genes, such as CYP2B6, than the luciferase assay. In addition, some CAR antagonists which repress CYP2B6 mRNA expression in HPH, such as sorafenib, rimonabant, and CINPA1, were found to translocate hCAR to the nucleus of HPH. Notably, both the translocation assay and the luciferase assay identified mosapride citrate (MOS), a gastroprokinetic agent that is known to reduce fasting blood glucose levels in humans, as a novel hCAR activator. Further studies with MOS in HPH uncovered that MOS can repress the expression of gluconeogenic genes and decrease glucose output from hepatocytes, providing a previously unidentified liver-specific mechanism by which MOS modulates blood glucose levels.


Assuntos
Benzamidas/farmacologia , Gluconeogênese/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Morfolinas/farmacologia , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptor Constitutivo de Androstano , Gluconeogênese/fisiologia , Humanos
13.
Eur J Med Chem ; 179: 84-99, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31247375

RESUMO

The DNA alkylating prodrug cyclophosphamide (CPA), alone or in combination with other agents, is one of the most commonly used anti-cancer agents. As a prodrug, CPA is activated by cytochrome P450 2B6 (CYP2B6), which is transcriptionally regulated by the human constitutive androstane receptor (hCAR). Therefore, hCAR agonists represent novel sensitizers for CPA-based therapies. Among known hCAR agonists, compound 6-(4-chlorophenyl)imidazo-[2,1-b]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime (CITCO) is the most potent and broadly utilized in biological studies. Through structural modification of CITCO, we have developed a novel compound DL5016 (32), which has an EC50 value of 0.66 µM and EMAX value of 4.9 when activating hCAR. DL5016 robustly induced the expression of hCAR target gene CYP2B6, at both the mRNA and protein levels, and caused translocation of hCAR from the cytoplasm to the nucleus in human primary hepatocytes. The effects of DL5016 were highlighted by dramatically enhancing the efficacy of CPA-based cytotoxicity to non-Hodgkin lymphoma cells.


Assuntos
Antineoplásicos/farmacologia , Ciclofosfamida/farmacologia , Linfoma não Hodgkin/tratamento farmacológico , Pró-Fármacos/farmacologia , Receptores Citoplasmáticos e Nucleares/agonistas , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Receptor Constitutivo de Androstano , Ciclofosfamida/síntese química , Ciclofosfamida/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Linfoma não Hodgkin/metabolismo , Linfoma não Hodgkin/patologia , Estrutura Molecular , Pró-Fármacos/síntese química , Pró-Fármacos/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
14.
Molecules ; 24(5)2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30818834

RESUMO

The nuclear receptor, estrogen-related receptor alpha (ERRα; NR3B1), plays a pivotal role in energy homeostasis. Its expression fluctuates with the demands of energy production in various tissues. When paired with the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), the PGC/ERR pathway regulates a host of genes that participate in metabolic signaling networks and in mitochondrial oxidative respiration. Unregulated overexpression of ERRα is found in many cancer cells, implicating a role in cancer progression and other metabolism-related diseases. Using high throughput screening assays, we screened the Tox21 10K compound library in stably transfected HEK293 cells containing either the ERRα-reporter or the reporter plus PGC-1α expression plasmid. We identified two groups of antagonists that were potent inhibitors of ERRα activity and/or the PGC/ERR pathway: nine antineoplastic agents and thirteen pesticides. Results were confirmed using gene expression studies. These findings suggest a novel mechanism of action on bioenergetics for five of the nine antineoplastic drugs. Nine of the thirteen pesticides, which have not been investigated previously for ERRα disrupting activity, were classified as such. In conclusion, we demonstrated that high-throughput screening assays can be used to reveal new biological properties of therapeutic and environmental chemicals, broadening our understanding of their modes of action.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Sobrevivência Celular , Descoberta de Drogas , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Neoplasias/patologia , Receptores de Estrogênio/antagonistas & inibidores , Células Cultivadas , Técnicas de Química Combinatória , Moduladores de Receptor Estrogênico/química , Moduladores de Receptor Estrogênico/farmacologia , Células HEK293 , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Receptor ERRalfa Relacionado ao Estrogênio
15.
Toxicol Sci ; 167(1): 282-292, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30247703

RESUMO

The constitutive androstane receptor (CAR; NR1I3) is a nuclear receptor involved in all phases of drug metabolism and disposition. However, recently it's been implicated in energy metabolism, tumor progression, and cancer therapy as well. It is, therefore, important to identify compounds that induce human CAR (hCAR) activation to predict drug-drug interactions and potential therapeutic usage. In this study, we screen the Tox21 10,000 compound collection to characterize hCAR activators. A potential novel structural cluster of compounds was identified, which included nitazoxanide and tenonitrozole, whereas known structural clusters, such as flavones and prazoles, were also detected. Four compounds, neticonazole, diphenamid, phenothrin, and rimcazole, have been identified as novel hCAR activators, one of which, rimcazole, shows potential selectivity toward hCAR over its sister receptor, the pregnane X receptor (PXR). All 4 compounds translocated hCAR from the cytoplasm into the nucleus demonstrating the first step to CAR activation. Profiling these compounds as hCAR activators would enable an estimation of drug-drug interactions, as well as identify prospective therapeutically beneficial drugs.


Assuntos
Núcleo Celular/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/metabolismo , Bibliotecas de Moléculas Pequenas/toxicidade , Técnicas de Cultura de Células , Núcleo Celular/metabolismo , Células Cultivadas , Receptor Constitutivo de Androstano , Citoplasma/metabolismo , Interações Medicamentosas , Hepatócitos/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Estrutura Molecular , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/genética , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
16.
Sci Rep ; 8(1): 3783, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29491351

RESUMO

In vitro assay data have recently emerged as a potential alternative to traditional animal toxicity studies to aid in the prediction of adverse effects of chemicals on humans. Here we evaluate the data generated from a battery of quantitative high-throughput screening (qHTS) assays applied to a large and diverse collection of chemicals, including approved drugs, for their capacity in predicting human toxicity. Models were built with animal in vivo toxicity data, in vitro human cell-based assay data, as well as in combination with chemical structure and/or drug-target information to predict adverse effects observed for drugs in humans. Interestingly, we found that the models built with the human cell-based assay data performed close to those of the models based on animal in vivo toxicity data. Furthermore, expanding the biological space coverage of assays by including additional drug-target annotations was shown to significantly improve model performance. We identified a small set of targets, which, when added to the current suite of in vitro human cell-based assay data, result in models that greatly outperform those built with the existing animal toxicity data. Assays can be developed for this set of targets to screen compounds for construction of robust models for human toxicity prediction.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/diagnóstico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Ensaios de Triagem em Larga Escala/métodos , Preparações Farmacêuticas/análise , Testes de Toxicidade/métodos , Animais , Humanos , Técnicas In Vitro , Incidência , Relação Quantitativa Estrutura-Atividade , Estados Unidos/epidemiologia
17.
ACS Cent Sci ; 4(12): 1727-1741, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30648156

RESUMO

Natural products and their derivatives continue to be wellsprings of nascent therapeutic potential. However, many laboratories have limited resources for biological evaluation, leaving their previously isolated or synthesized compounds largely or completely untested. To address this issue, the Canvass library of natural products was assembled, in collaboration with academic and industry researchers, for quantitative high-throughput screening (qHTS) across a diverse set of cell-based and biochemical assays. Characterization of the library in terms of physicochemical properties, structural diversity, and similarity to compounds in publicly available libraries indicates that the Canvass library contains many structural elements in common with approved drugs. The assay data generated were analyzed using a variety of quality control metrics, and the resultant assay profiles were explored using statistical methods, such as clustering and compound promiscuity analyses. Individual compounds were then sorted by structural class and activity profiles. Differential behavior based on these classifications, as well as noteworthy activities, are outlined herein. One such highlight is the activity of (-)-2(S)-cathafoline, which was found to stabilize calcium levels in the endoplasmic reticulum. The workflow described here illustrates a pilot effort to broadly survey the biological potential of natural products by utilizing the power of automation and high-throughput screening.

18.
Endocrinology ; 159(2): 744-753, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29216352

RESUMO

The estrogen-related receptor α (ERRα) is an orphan nuclear receptor (NR) that plays a role in energy homeostasis and controls mitochondrial oxidative respiration. Increased expression of ERRα in certain ovarian, breast, and colon cancers has a negative prognosis, indicating an important role for ERRα in cancer progression. An interaction between ERRα and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) has also recently been shown to regulate an enzyme in the ß-oxidation of free fatty acids, thereby suggesting that ERRα plays an important role in obesity and type 2 diabetes. Therefore, it would be prudent to identify compounds that can act as activators of ERRα. In this study, we screened ∼10,000 (8311 unique) compounds, known as the Tox21 10K collection, to identify agonists of ERRα. We performed this screen using two stably transfected HEK 293 cell lines, one with the ERRα-reporter alone and the other with both ERRα-reporter and PGC-1α expression vectors. After the primary screening, we identified more than five agonist clusters based on compound structural similarity analysis (e.g., statins). By examining the activities of the confirmed ERRα modulators in other Tox21 NR assays, eliminating those with promiscuous NR activity, and performing follow-up assays (e.g., small interfering RNA knockdown), we identified compounds that might act as endocrine disrupters through effects on ERRα signaling. To our knowledge, this study is the first comprehensive analysis in discovering potential endocrine disrupters that affect the ERRα signaling pathway.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Receptores de Estrogênio/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Regiões Promotoras Genéticas , Receptores de Estrogênio/genética , Transdução de Sinais/efeitos dos fármacos , Receptor ERRalfa Relacionado ao Estrogênio
19.
J Trauma Acute Care Surg ; 83(6): 1082-1087, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28697019

RESUMO

BACKGROUND: Previous research suggests adolescent trauma patients can be managed equally effectively at pediatric and adult trauma centers. We sought to determine whether this association would be upheld for adolescent severe polytrauma patients. We hypothesized that no difference in adjusted outcomes would be observed between pediatric trauma centers (PTCs) and adult trauma centers (ATCs) for this population. METHODS: All severely injured adolescent (aged 12-17 years) polytrauma patients were extracted from the Pennsylvania Trauma Outcomes Study database from 2003 to 2015. Polytrauma was defined as an Abbreviated Injury Scale (AIS) score ≥3 for two or more AIS-defined body regions. Dead on arrival, transfer, and penetrating trauma patients were excluded from analysis. ATC were defined as adult-only centers, whereas standalone pediatric hospitals and adult centers with pediatric affiliation were considered PTC. Multilevel mixed-effects logistic regression models assessed the adjusted impact of center type on mortality and total complications while controlling for age, shock index, Injury Severity Score, Glasgow Coma Scale motor score, trauma center level, case volume, and injury year. A generalized linear mixed model characterized functional status at discharge (FSD) while controlling for the same variables. RESULTS: A total of 1,606 patients met inclusion criteria (PTC: 868 [54.1%]; ATC: 738 [45.9%]), 139 (8.66%) of which died in-hospital. No significant difference in mortality (adjusted odds ratio [AOR]: 1.10, 95% CI 0.54-2.24; p = 0.794; area under the receiver operating characteristic: 0.89) was observed between designations in adjusted analysis; however, FSD (AOR: 0.38, 95% CI 0.15-0.97; p = 0.043) was found to be lower and total complication trends higher (AOR: 1.78, 95% CI 0.98-3.32; p = 0.058) at PTC for adolescent polytrauma patients. CONCLUSION: Contrary to existing literature on adolescent trauma patients, our results suggest patients aged 12-17 presenting with polytrauma may experience improved overall outcomes when managed at adult compared to pediatric trauma centers. LEVEL OF EVIDENCE: Epidemiologic study, level III.


Assuntos
Gerenciamento Clínico , Traumatismo Múltiplo/terapia , Centros de Traumatologia , Ferimentos não Penetrantes/terapia , Adolescente , Adulto , Fatores Etários , Criança , Feminino , Mortalidade Hospitalar/tendências , Humanos , Escala de Gravidade do Ferimento , Masculino , Traumatismo Múltiplo/diagnóstico , Traumatismo Múltiplo/mortalidade , Razão de Chances , Pennsylvania/epidemiologia , Estudos Retrospectivos , Taxa de Sobrevida/tendências , Ferimentos não Penetrantes/diagnóstico , Ferimentos não Penetrantes/mortalidade
20.
J Trauma Nurs ; 24(3): 158-163, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28486320

RESUMO

Compassion fatigue (CF), or vicarious traumatization, is a state of physical/emotional distress that results from caring for those experiencing pain. We sought to characterize levels of CF in intensive care unit (ICU) and oncology nursing populations with subanalyses comparing specific personal/professional demographic factors. The Professional Quality of Life (ProQOL) scale, a validated tool for assessing CF, burnout (BO), and compassion satisfaction (CS), was distributed to the ICU and oncology divisions of a community hospital. Demographic data and ProQOL scale scores were collected and compared within specialty and gender subgroups. Two-sample t tests and regression analyses were used to compare groups. Statistical significance was defined as p < .05. A total of 86 nurses submitted completed surveys able to be analyzed. Levels of CS were significantly lower (p = .023) and levels of BO were significantly higher (p = .029) in ICU nurses than in oncology nurses. Male nurses exhibited significantly higher CS (p = .001) and significantly lower BO (p = .021) and CF (p = .014) than female nurses. Intensive care unit nurses and female nurses from both ICU and oncology specialties may be at increased risk for developing a poorer overall ProQOL and CF.


Assuntos
Esgotamento Profissional/epidemiologia , Fadiga de Compaixão/epidemiologia , Satisfação no Emprego , Recursos Humanos de Enfermagem Hospitalar/psicologia , Qualidade de Vida , Adulto , Esgotamento Profissional/psicologia , Fadiga de Compaixão/psicologia , Enfermagem de Cuidados Críticos/métodos , Estudos Transversais , Demografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Recursos Humanos de Enfermagem Hospitalar/classificação , Enfermagem Oncológica/métodos , Satisfação Pessoal , Medição de Risco , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA